Virtual avatars learned cartwheels and other stunts from videos of people

Animated characters can learn from online tutorials, too.

A new computer program teaches virtual avatars new skills, such as dances, acrobatic stunts and martial art moves, from YouTube videos. This kind of system, described in the November ACM Transactions on Graphics, could render more physically coordinated characters for movies and video games, or serve as a virtual training ground for robots.

“I was really impressed” by the program, says Daniel Holden, a machine-learning researcher at Ubisoft La Forge in Montreal not involved in the work. Rendering accurate, natural-looking movements based on everyday video clips “has always been a goal for researchers in this field.”
Animated characters typically have learned full-body motions by studying motion capture data, collected by a camera that tracks special markers attached to actors’ bodies. But this technique requires special equipment and often works only indoors.

The new program leverages a type of computer code known as an artificial neural network, which roughly mimics how the human brain processes information. Trained on about 100,000 images of people in various poses, the program first estimates an actor’s pose in each frame of a video clip. Then, it teaches a virtual avatar to re-create the actor’s motion using reinforcement learning, giving the character a virtual “reward” when it matches the video actor’s pose in a frame.

Computer scientist Jason Peng and colleagues at the University of California, Berkeley, fed YouTube videos into the system to teach characters to do somersaults, backflips, vaulting and other stunts.
Even characters such as animated Atlas robots with bodies drastically different from those of their human video teachers mastered these motions (SN: 12/13/14, p. 16). Characters could also perform under conditions not seen in the training video, like cartwheeling while being pelted with blocks or moving across terrain riddled with holes.
The work, also reported October 8 at arXiv.org, is a step “toward making motion capture easier, cheaper and more accessible,” Holden says. Videos could be used to render virtual versions of outdoor activities, since motion capture is difficult to do outdoors, or to create lifelike avatars of large animals that would be difficult to stick with motion capture markers.

This kind of program may also someday be used to teach robots new skills, Peng says. An animated version of a robot could master skills in a virtual environment before that learned computer code powered a machine in the physical world.

These animated characters still struggle with nimble dance steps, such as the “Gangnam Style” jig, and learn from short clips featuring only a single person. David Jacobs, a computer scientist at the University of Maryland in College Park not involved in the work, looks forward to future virtual avatars that can reenact longer, more complex actions, such as pairs of people dancing or soccer teams playing a game.

“That’s probably a much harder problem, because [each] person’s not as clearly visible, but it would be really cool,” Jacobs says. “This is only the beginning.”

U.S. cases of a polio-like illness rise, but there are few clues to its cause

The cause of a rare polio-like disease continues to elude public health officials even as the number of U.S. cases grows.

Confirmed cases of acute flaccid myelitis cases have risen to 90 in 27 states, out of a possible 252 under investigation, the U.S. Centers for Disease Control and Prevention announced November 13. That’s up from 62 confirmed cases out of 127 suspected just a month ago (SN Online: 10/16/18). There were a record 149 cases in 2016.
“I understand parents want answers,” Nancy Messonnier, director of the CDC’s National Center for Immunization and Respiratory Diseases in Atlanta, said at a news conference. The agency continues to investigate the disease, which causes weakness in one or more limbs and primarily affects children. But “right now the science doesn’t give us an answer,” she said.

A deep dive into 80 of the confirmed cases offered some details about the course of AFM. In most, fever or respiratory symptoms like coughing and congestion, or both, preceded limb weakness by three to 10 days. Most cases involved weakness in an upper limb, researchers report online November 13 in the Morbidity and Mortality Weekly Report.

Only two samples of cerebrospinal fluid — the clear fluid that bathes the brain and spinal cord — tested positive for a pathogen, each for a different enterovirus. Since 2014, when the first big outbreak of AFM occurred, most AFM spinal fluid samples haven’t produced a culprit, Messonnier said. The body may clear the pathogen or it hides in tissues, she said, or the body’s own immune response to a pathogen may lead to spinal cord damage.

“This time of year, many children have fever and respiratory symptoms [and] most of them do not go on to develop AFM,” Messonnier said. “We’re trying to figure out what the triggers are that would cause someone to develop AFM later.”

Physicists finally calculated where the proton’s mass comes from

A proton’s mass is more than just the sum of its parts. And now scientists know just what accounts for the subatomic particle’s heft.

Protons are made up of even smaller particles called quarks, so you might expect that simply adding up the quarks’ masses should give you the proton’s mass. However, that sum is much too small to explain the proton’s bulk. And new, detailed calculations show that only 9 percent of the proton’s heft comes from the mass of constituent quarks. The rest of the proton’s mass comes from complicated effects occurring inside the particle, researchers report in the Nov. 23 Physical Review Letters.

Quarks get their masses from a process connected to the Higgs boson, an elementary particle first detected in 2012 (SN: 7/28/12, p. 5). But “the quark masses are tiny,” says study coauthor and theoretical physicist Keh-Fei Liu of the University of Kentucky in Lexington. So, for protons, the Higgs explanation falls short.

Instead, most of the proton’s 938 million electron volts of mass is due to complexities of quantum chromodynamics, or QCD, the theory which accounts for the churning of particles within the proton. Making calculations with QCD is extremely difficult, so to study the proton’s properties theoretically, scientists rely on a technique called lattice QCD, in which space and time are broken up into a grid, upon which the quarks reside.
Using this technique, physicists had previously calculated the proton’s mass (SN: 12/20/08, p. 13). But scientists hadn’t divvied up where that mass comes from until now, says theoretical physicist André Walker-Loud of Lawrence Berkeley National Laboratory in California. “It’s exciting because it’s a sign that … we’ve really hit this new era” in which lattice QCD can be used to better understand nuclear physics.

In addition to the 9 percent of the proton’s mass that comes from quarks’ heft, 32 percent comes from the energy of the quarks zipping around inside the proton, Liu and colleagues found. (That’s because energy and mass are two sides of the same coin, thanks to Einstein’s famous equation, E=mc2.) Other occupants of the proton, massless particles called gluons that help hold quarks together, contribute another 36 percent via their energy.

The remaining 23 percent arises due to quantum effects that occur when quarks and gluons interact in complicated ways within the proton. Those interactions cause QCD to flout a principle called scale invariance. In scale invariant theories, stretching or shrinking space and time makes no difference to the theories’ results. Massive particles provide the theory with a scale, so when QCD defies scale invariance, protons also gain mass.

The results of the study aren’t surprising, says theoretical physicist Andreas Kronfeld of Fermilab in Batavia, Ill. Scientists have long suspected that the proton’s mass was made up in this way. But, he says, “this kind of calculation replaces a belief with scientific knowledge.”

NASA’s InSight lander has touched down safely on Mars

Editor’s note: This story will be periodically updated as new images are released.

NASA’s InSight lander touched down on Mars on November 26 for a study of the Red Planet’s insides.

“Touchdown confirmed, InSight is on the surface of Mars!” said Christine Szalai, a spacecraft engineer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., in a live broadcast from mission control. The lander sent its first picture — which mostly showed the inside of the dust cover on its camera lens — shortly after landing.
The landing of InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, brings the total number of successful NASA Mars landings to eight. InSight touched down at about 2:55 p.m. Eastern time in a wide, flat plain called Elysium Planitia, near Mars’ equator. News of the landing was relayed by a pair of tiny satellites called MarCO that travelled to Mars with InSight as an in-house communications team (SN Online: 11/18/18).

Over the next Martian year (about two Earth years), InSight will use a seismometer to listen for “Marsquakes” and other seismic waves rippling through the planet (SN: 5/26/18, p. 13). The lander will also drill five meters into Mars’ surface to measure the planet’s internal heat flow, a sign of how geologically active Mars is today.
Update, November 27, 2018: InSight has opened its solar panels and is charging its batteries. In the next few days, the Mars lander will stretch out its robotic arm and take photos of the ground so the InSight team can decide where to place its scientific instruments. The first image from the Instrument Deployment Camera, taken shortly after landing November 26 and beamed back at 8:30 p.m. Eastern Standard Time, shows the spacecraft’s body, the folded-up robotic arm and the wide flat expanse of Elysium Planitia.

Two new books explore the science and history of the 1918 flu pandemic

The U.S.S. Leviathan set sail from Hoboken, N.J., on September 29, 1918, carrying roughly 10,000 troops and 2,000 crewmen. The ship, bound for the battlefields in France, had been at sea less than 24 hours when the first passengers fell ill. By the end of the day, 700 people had developed signs of the flu.

The medical staff tried to separate the sick from the healthy, but that soon proved impossible. The poorly ventilated bunkrooms filled with the stench of illness. The floor grew slippery with blood from many nosebleeds, and the wails of the sick and dying echoed below deck. Bodies piled up and began decomposing, until finally the crew was forced to heave them into the sea. It was the stuff of nightmares.
This is just one of the grisly scenes in Pandemic 1918 by historian Catharine Arnold. The book details how the movement of troops during World War I helped drive the spread of a deadly strain of influenza around the globe — from the American Midwest to Cape Town, South Africa, to New Zealand and beyond.

Scientists have yet to conclusively determine where that flu originated; Arnold suggests it was on a massive military base in Étaples, France. But all agree that the pandemic that became known as the Spanish flu didn’t begin in Spain. And the disease, which ultimately killed more than 50 million people, wasn’t caused by any ordinary influenza strain.
Grim eyewitness accounts chronicle the gory details of how this virus differed. Victims often bled from the nose or mouth, writhed in pain and grew delirious with fever. Their faces turned dusky blue as their lungs filled with pus. Healthy men and women in their prime were dying, sometimes within days of falling ill. And there was a smell associated with the sick, “like very musty straw,” recalled one survivor. Arnold’s graphic depictions of the carnage make for some gripping scenes, but the book is perhaps too ambitious. She zigzags between so many people and places that only the most careful reader will be able to keep track of who fell ill where.

Another book tied to the 100th anniversary of the Spanish flu, Influenza, by long-time emergency room doctor Jeremy Brown, covers some of the same ground. Both Arnold and Brown, for instance, chronicle the hunt for the 1918 virus in bodies buried in Arctic permafrost and efforts to reconstruct the virus’s genetic code. But while Arnold’s book is rooted primarily in the past, Brown spends more time on recent research. He provides an in-depth look at what scientists now know about the 1918 strain, an H1N1 virus that originated in birds and spent time in an unknown mammalian host before infecting humans. In 2005, researchers managed to re-create the virus and test it in mice. The experiment provided insight into how the virus might have wrought so much damage in the lungs, but it also renewed a debate over the ethics of reconstructing deadly viruses. These kinds of experiments can help scientists better understand the inner workings of pathogens, but might also help people build biological weapons.

Brown also provides a fascinating look at the factors that make the more common seasonal flu so challenging to predict and prevent. Because data collection relies on the generosity of health care workers and because doctors rarely test for influenza, researchers can’t get a full picture of the scope of the disease. And because the virus mutates easily, scientists struggle to accurately predict what next year’s outbreak might look like. The strains circulating when pharmaceutical companies begin making vaccines might not be the strains that are circulating when the vaccines reach clinics and pharmacies. That’s why the flu shot’s efficacy varies from about 10 to 60 percent each year (SN: 10/28/17, p. 18).

Both books provide fresh perspectives on the 1918 pandemic and the influenza virus that caused it. Readers interested in a deep dive into the harrowing details and eyewitness accounts from that dark time should pick up Arnold’s book. For those who want more science with a frank discussion of the challenges influenza still poses, Brown delivers a clear and captivating overview. Together the books offer an unsettling picture of the damage influenza inflicted on the world 100 years ago and the misery that this virus might yet bring again.

Magnets make a new soft metamaterial stiffen up in a flash

Magnetism transforms a weird new material from soft to rigid in a split second.

This metamaterial — a synthetic structure designed to behave in ways that natural materials don’t — comprises a gridlike network of plastic tubes filled with fluid that becomes more viscous in a magnetic field, causing the tubes to firm up. The material could help make more adaptable robots or body armor, researchers report online December 7 in Science Advances.

Christopher Spadaccini, a materials engineer at Lawrence Livermore National Laboratory in California, and colleagues 3-D printed lattices composed of plastic struts 5 millimeters long and injected them with a mixture of tiny iron particles and oil. In the absence of a magnetic field, the iron microparticles remain scattered randomly throughout the oil, so the liquid is runny. But close to a magnet, these iron microparticles align into chains along the magnetic field lines, making the fluid viscous and the lattices stiffer.
A solid hunk of iron microparticle–filled material would be heavy and expensive to make. Building tubular structures that are mostly open space makes this tunable material more lightweight, says coauthor Julie Jackson, an engineer at Lawrence Livermore.
The researchers tested individual “unit cells” of the new material — hollow, die-shaped structures that can collectively form the larger lattices. Moving one unit cell from about eight centimeters to one centimeter away from a magnet increased its stiffness by about 62 percent.

In future technologies, this material could be paired with devices that use electricity to generate magnetic fields, called electromagnets. Material that becomes softer or stiffer on demand could be used to make next-generation sports pads or helmets with tunable impact absorption, Jackson says. Robots with changeable stiffness could squeeze into small spaces, but then be sturdy enough to carry or move other objects.

A trick inspired by Hansel and Gretel could help rovers explore other worlds

In the classic fairy tale, Hansel and Gretel dropped bread crumbs while walking through a treacherous forest so they wouldn’t lose their way. Rovers may one day use a similar trick to traverse other planets without losing their data.

Typically, if a rover permanently loses communication during a mission, all the information that it has gathered is lost. To avoid this, researchers suggest using a multi-rover system in which a smaller rover piggybacks on a larger “mother rover.” The smaller rover would then venture into any especially uncertain territory, such as a cave or lava tubes, deploying sensors the size of an AirPods case like bread crumbs as it goes.
The sensors could then communicate with each other via a wireless network and funnel any collected data back to the mother rover, theoretical physicist Wolfgang Fink and colleagues propose February 11 in Advances in Space Research. As proof of concept, the team built prototype sensors that communicate via Wi-Fi.

It’s not that the smaller rover would be following the “bread crumbs” back the way it came. Instead, “we use [the sensors] for the data to find its way communication-wise out of the cave to the mother rover,” says Fink, of the University of Arizona in Tucson.

The technology could also be useful here on Earth, especially after a natural disaster such as an earthquake. A rover could be sent with the deployable sensors into rubble where it’s too dangerous for people to perform search-and-rescue missions (SN: 12/3/14).

The bread crumb–like communication network could allow researchers to “cater to the essence of scientific exploration,” Fink says, by allowing rovers to overcome some of the constraints posed by tricky terrain. “To get to the real exciting science, you most of the time have to go to exotic places, hard-to-get-to places.”

A ‘fire wolf’ fish could expand what we know about one unusual deep-sea ecosystem

Off the Pacific coast of Costa Rica sits a deep-sea chimera of an ecosystem. Jacó Scar is a methane seep, where the gas escapes from sediment into the seawater, but the seep isn’t cold like the others found before it. Instead, geochemical activity gives the Scar lukewarm water that enables organisms from both traditionally colder seeps and scalding hot hydrothermal vents to call it home.

One resident of the Scar is a newly identified species of small, purplish fish called an eelpout, described for the first time on January 19 in Zootaxa. This fish is the first vertebrate species found at the Scar and could help scientists understand how the unique ecosystem developed.
Jacó Scar was discovered during exploration of a known field of methane seeps off the Costa Rican coast and named for the nearby town of Jacó. It is “a really diverse place” with many different organisms living in various microhabitats, says Lisa Levin, a marine ecologist at Scripps Institution of Oceanography in La Jolla, Calif.

Levin was on one of the first expeditions to the Scar but wasn’t involved in the new study. She recalls the team finding and collecting one of the fish during this early excursion, but the researchers didn’t recognize it as a new species.

Several more specimens were snagged during later submersible dives. Charlotte Seid, an invertebrate biologist at Scripps who is working on a checklist of organisms found at the Costa Rican seeps, brought the fishy finds to ichthyologist Ben Frable, also of Scripps, for formal identification.

Frable says he knew the fish was an eelpout. They look exactly as one would expect based on their name: like frowning eels, though they aren’t true eels. But he was having trouble determining what type. Eelpouts are a diverse family of fish comprised of nearly 300 species that can be found all over the world at various ocean depths.

Because the physical differences between species can be subtle, they are “kind of a tricky group” to identify, Frable says. “I just was not really getting anywhere.” So the team turned to eelpout expert Peter Rask Møller of the Natural History Museum of Denmark in Copenhagen, sending him X-rays, pictures and eventually one of the fish specimens.

Møller narrowed the enigmatic eelpout to the genus Pyrolycus, meaning “fire wolf.” Turns out, the tool, called a dichotomous key, that Frable had been using to identify the specimens was outdated, made before Pyrolycus was described in 2002. “I did not know that genus existed,” Frable says.

Because the other two known Pyrolycus species live far away in the western Pacific and have different physical features, the team dubbed the mystery fish P. jaco — a new species.

The first eelpouts most likely evolved in cold waters, Frable says, but many have since made their home in the scalding waters of hydrothermal vents. Of the 24 known fish species that live only at hydrothermal vents, “13 of them are eelpouts,” Frable says.
The new finding raises questions about how the known Pyrolycus species came to live so far apart. It may have to do with the fact that methane seeps are more common than previously thought on the ocean floor, and if some are lukewarm like Jacó Scar, the new species could have used them as refuges while moving east.

And by comparing P. jaco to its vent-living relatives, researchers may be able to figure out how it adapted to live in the tepid waters of the Scar — which may provide clues to how other species living there did too.

The eelpout is part of a medley of other species that form Jacó Scar’s composite ecosystem, along with, for example, clams typically found at cold seeps and bacteria found at hydrothermal vents. Jacó Scar is a “mixing bowl” of species found in other parts of the world, Seid says. Figuring out how this eclectic bunch interacts “is part of the fun.”

Saturn’s rings paint some of its moons shades of blue and red

Saturn’s rings are painting its innermost moons.

Data from NASA’s now-defunct Cassini spacecraft show that five odd-shaped moons embedded in Saturn’s rings are different colors, and that the hues come from the rings themselves, researchers report. That observation could help scientists figure out how the moons were born.

“The ring moons and the rings themselves are kind of one and the same,” says planetary scientist Bonnie Buratti of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “For as long as the moons have existed, they’ve been accreting particles from the rings.”
Saturn has more than 60 moons, but those nearest to the planet interact closely with its main band of rings. Between December 2016 and April 2017, Cassini passed close to five of these ring-dwelling moons: ravioli-shaped Pan and Atlas (SN Online: 3/10/17), ring-sculpting Daphnis and Pandora (SN: 9/2/17, p. 16) and potato-shaped Epimetheus. The flybys brought Cassini between two and 10 times closer to the moons than it had ever been, before the spacecraft deliberately crashed into Saturn in September 2017 (SN Online: 9/15/17).

Examining those close-ups, Buratti and her colleagues noticed that the moons’ colors vary depending on the objects’ distances from Saturn. And the moon hues are similar to the colors of the rings that the objects are closest to, the team reports online March 28 in Science.
Close-in Pan was the reddest moon, while the farthest-out Epimetheus was the bluest. The researchers think the red material comes from Saturn’s dense main rings, and mostly consists of organics and iron (SN Online: 10/4/18). The blue material is probably water ice from Saturn’s more distant E ring, which is created by plumes erupting from the larger, icy moon Enceladus.
The team thinks that the rings are continually depositing material onto the moons. “It’s an ongoing process,” Buratti says. She notes that “skirts” of material at Atlas and Pan’s equators are probably made of accreted ring debris, too.

The overall similarity between the moons and rings led the researchers to conclude that these small moons are leftover shards of a destructive event that created the rings in the first place. But it’s unknown whether that event was a collision between long-gone, larger moons, the shredding of one moon by Saturn’s gravity, or some other occurrence (SN: 1/20/18, p. 7).

Saturn, its rings and its moons are “very dynamic,” says planetary scientist Matija Ćuk of the SETI Institute in Mountain View, Calif. The idea that the rings are still shedding material onto the moons today “sounds perfectly reasonable.” He isn’t sure the moons formed at the same time as the rings, though. It’s possible “they formed from the rings since that catastrophic event,” he says.

4 things we’ll learn from the first closeup image of a black hole

Editor’s note: On April 10, the Event Horizon Telescope collaboration released a picture of the supermassive black hole at the center of galaxy M87. Read the full story here.

We’re about to see the first close-up of a black hole.

The Event Horizon Telescope, a network of eight radio observatories spanning the globe, has set its sights on a pair of behemoths: Sagittarius A*, the supermassive black hole at the Milky Way’s center, and an even more massive black hole 53.5 million light-years away in galaxy M87 (SN Online: 4/5/17).
In April 2017, the observatories teamed up to observe the black holes’ event horizons, the boundary beyond which gravity is so extreme that even light can’t escape (SN: 5/31/14, p. 16). After almost two years of rendering the data, scientists are gearing up to release the first images in April.

Here’s what scientists hope those images can tell us.

What does a black hole really look like?
Black holes live up to their names: The great gravitational beasts emit no light in any part of the electromagnetic spectrum, so they themselves don’t look like much.

But astronomers know the objects are there because of a black hole’s entourage. As a black hole’s gravity pulls in gas and dust, matter settles into an orbiting disk, with atoms jostling one another at extreme speeds. All that activity heats the matter white-hot, so it emits X-rays and other high-energy radiation. The most voraciously feeding black holes in the universe have disks that outshine all the stars in their galaxies (SN Online: 3/16/18).
The EHT’s image of the Milky Way’s Sagittarius A, also called SgrA, is expected to capture the black hole’s shadow on its accompanying disk of bright material. Computer simulations and the laws of gravitational physics give astronomers a pretty good idea of what to expect. Because of the intense gravity near a black hole, the disk’s light will be warped around the event horizon in a ring, so even the material behind the black hole will be visible.
And the image will probably look asymmetrical: Gravity will bend light from the inner part of the disk toward Earth more strongly than the outer part, making one side appear brighter in a lopsided ring.

Does general relativity hold up close to a black hole?
The exact shape of the ring may help break one of the most frustrating stalemates in theoretical physics.

The twin pillars of physics are Einstein’s theory of general relativity, which governs massive and gravitationally rich things like black holes, and quantum mechanics, which governs the weird world of subatomic particles. Each works precisely in its own domain. But they can’t work together.

“General relativity as it is and quantum mechanics as it is are incompatible with each other,” says physicist Lia Medeiros of the University of Arizona in Tucson. “Rock, hard place. Something has to give.” If general relativity buckles at a black hole’s boundary, it may point the way forward for theorists.

Since black holes are the most extreme gravitational environments in the universe, they’re the best environment to crash test theories of gravity. It’s like throwing theories at a wall and seeing whether — or how — they break. If general relativity does hold up, scientists expect that the black hole will have a particular shadow and thus ring shape; if Einstein’s theory of gravity breaks down, a different shadow.

Medeiros and her colleagues ran computer simulations of 12,000 different black hole shadows that could differ from Einstein’s predictions. “If it’s anything different, [alternative theories of gravity] just got a Christmas present,” says Medeiros, who presented the simulation results in January in Seattle at the American Astronomical Society meeting. Even slight deviations from general relativity could create different enough shadows for EHT to probe, allowing astronomers to quantify how different what they see is from what they expect.
Do stellar corpses called pulsars surround the Milky Way’s black hole?
Another way to test general relativity around black holes is to watch how stars careen around them. As light flees the extreme gravity in a black hole’s vicinity, its waves get stretched out, making the light appear redder. This process, called gravitational redshift, is predicted by general relativity and was observed near SgrA* last year (SN: 8/18/18, p. 12). So far, so good for Einstein.

An even better way to do the same test would be with a pulsar, a rapidly spinning stellar corpse that sweeps the sky with a beam of radiation in a regular cadence that makes it appear to pulse (SN: 3/17/18, p. 4). Gravitational redshift would mess up the pulsars’ metronomic pacing, potentially giving a far more precise test of general relativity.

“The dream for most people who are trying to do SgrA* science, in general, is to try to find a pulsar or pulsars orbiting” the black hole, says astronomer Scott Ransom of the National Radio Astronomy Observatory in Charlottesville, Va. “There are a lot of quite interesting and quite deep tests of [general relativity] that pulsars can provide, that EHT [alone] won’t.”

Despite careful searches, no pulsars have been found near enough to SgrA* yet, partly because gas and dust in the galactic center scatters their beams and makes them difficult to spot. But EHT is taking the best look yet at that center in radio wavelengths, so Ransom and colleagues hope it might be able to spot some.

“It’s a fishing expedition, and the chances of catching a whopper are really small,” Ransom says. “But if we do, it’s totally worth it.”
How do some black holes make jets?
Some black holes are ravenous gluttons, pulling in massive amounts of gas and dust, while others are picky eaters. No one knows why. SgrA* seems to be one of the fussy ones, with a surprisingly dim accretion disk despite its 4 million solar mass heft. EHT’s other target, the black hole in galaxy M87, is a voracious eater, weighing in at between about 3.5 billion and 7.22 billion solar masses. And it doesn’t just amass a bright accretion disk. It also launches a bright, fast jet of charged subatomic particles that stretches for about 5,000 light-years.

“It’s a little bit counterintuitive to think a black hole spills out something,” says astrophysicist Thomas Krichbaum of the Max Planck Institute for Radio Astronomy in Bonn, Germany. “Usually people think it only swallows something.”

Many other black holes produce jets that are longer and wider than entire galaxies and can extend billions of light-years from the black hole. “The natural question arises: What is so powerful to launch these jets to such large distances?” Krichbaum says. “Now with the EHT, we can for the first time trace what is happening.”

EHT’s measurements of M87’s black hole will help estimate the strength of its magnetic field, which astronomers think is related to the jet-launching mechanism. And measurements of the jet’s properties when it’s close to the black hole will help determine where the jet originates — in the innermost part of the accretion disk, farther out in the disk or from the black hole itself. Those observations might also reveal whether the jet is launched by something about the black hole itself or by the fast-flowing material in the accretion disk.

Since jets can carry material out of the galactic center and into the regions between galaxies, they can influence how galaxies grow and evolve, and even where stars and planets form (SN: 7/21/18, p. 16).

“It is important to understanding the evolution of galaxies, from the early formation of black holes to the formation of stars and later to the formation of life,” Krichbaum says. “This is a big, big story. We are just contributing with our studies of black hole jets a little bit to the bigger puzzle.”

Editor’s note: This story was updated April 1, 2019, to correct the mass of M87’s black hole; the entire galaxy’s mass is 2.4 trillion solar masses, but the black hole itself weighs in at several billion solar masses. In addition, the black hole simulation is an example of one that uphold’s Einstein’s theory of general relativity, not one that deviates from it.